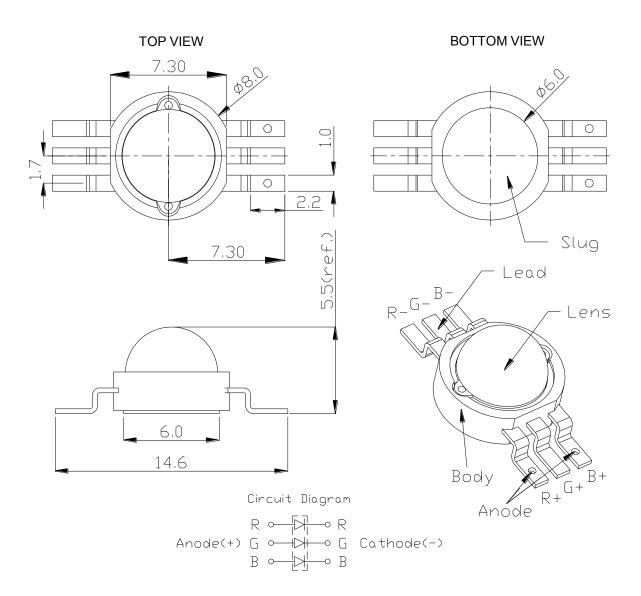


ProLight PM6B-3LFx 3W RGB Power LED Technical Datasheet Version: 1.2

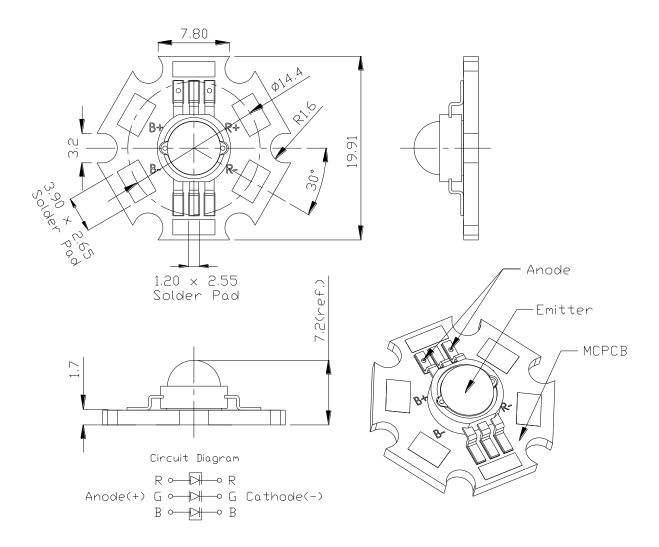

Features

- R, G, B three color in one Package
- High flux per LED
- Good color uniformity
- Low-temp. & lead free reflow soldering
- More energy efficient than incandescent and most halogen lamps
- Low Voltage DC operated
- Instant light (less than 100ns)
- No UV

Typical Applications

- Reading lights (car, bus, aircraft)
- Portable (flashlight, bicycle)
- Uplighters/Downlighters
- Decorative/Entertainment
- Bollards/Security/Garden
- Cove/Undershelf/Task
- Indoor/Outdoor Commercial and Residential Architectural
- Automotive Ext (Stop-Tail-Turn, CHMSL, Mirror Side Repeat)
- LCD backlights

Emitter Mechanical Dimensions



Notes:

- 1. The Anode side of the device is denoted by a hole in the lead frame.
- 2. Electrical insulation between the case and the board is required --- slug of device is not electrically neutral. Do not electrically connect either the anode or cathode to the slug.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. All dimendions without tolerances are for reference only.
- 6. Please do not bend the leads of the LED, otherwise it will damage the LED.
- 7. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

^{*}The appearance and specifications of the product may be modified for improvement without notice.

Star Mechanical Dimensions

Notes:

- 1. Slots in aluminum-core PCB for M3 or #4 mounting screw.
- 2. Electrical interconnection pads labeled on the aluminum-core PCB with "+" and "-" to denote positive and negative, respectively. All positive pads are interconnected, as are all negative pads, allowing for flexibility in array interconnection.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. All dimendions without tolerances are for reference only.
- 6. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics at 350mA, $T_J = 25$ °C

Radiation Colo	Color	Part Number		Lumious Flux ΦV (lm)	
	Color	Emitter	Star	Minimum	Typical
	Red			25	30
Lambertian	Green	PM6B-3LFE	PM6B-3LFS	55	66
	Blue			10	12.5

- ProLight maintains a tolerance of ± 10% on flux and power measurements.
- Please do not drive at rated current more than 1 second without proper heat sink.

Optical Characteristics at 350mA, T_J = 25°C

		Dominant Wavelength λ_D , or Color Temperature CCT		Total included Angle	Viewing Angle
Color	Min.	Тур.	Max.	(degrees) $\theta_{0.90V}$	(degrees) 2 θ _{1/2}
Red	613.5 nm	623 nm	631 nm	180	130
Green	515 nm	525 nm	535 nm	180	130
Blue	455 nm	465 nm	475 nm	180	130

- ProLight maintains a tolerance of ± 1nm for dominant wavelength measurements.
- ProLight maintains a tolerance of ± 5% for CCT measurements.

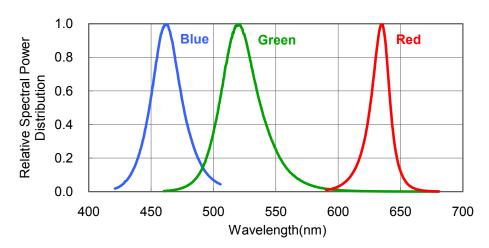
Electrical Characteristics at 350mA, T_J = 25°C

	Forward Voltage V _F (V)		
Color	Min.	Тур.	Max.
Red	1.75	2.4	3.1
Green	2.85	3.5	4.1
Blue	2.85	3.5	4.1

Absolute Maximum Ratings

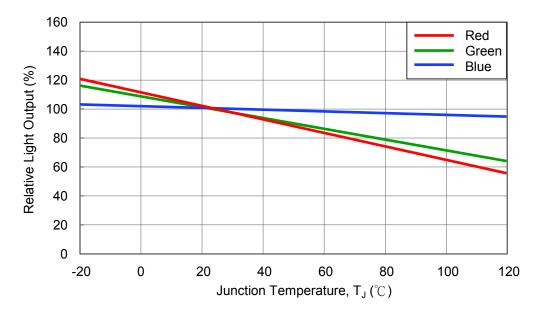
Parameter	Red/Green/Blue	
DC Forward Current (mA)	350	
Peak Pulsed Forward Current (mA)	500	
Average Forward Current (mA)	350	
ESD Sensitivity (HBM per MIL-STD-883E Method 3015.7	> ±500V	
LED Junction Temperature (°C)	120	
Aluminum-core PCB Temperature (°C)	105	
Storage & Operating Temperature (°C)	-40 to +105	
Soldering Temperature(°C)	235°C	

Dominant Wavelength Bin Structure

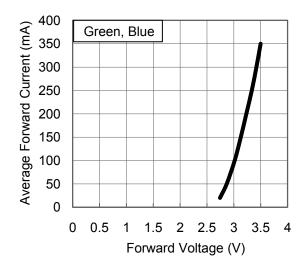

Color	Bin Code	Minimum Dominant Wavelength (nm)	Maximum Dominant Wavelength (nm)
Red	2	613.5	620.5
Reu	4	620.5	631.0
	А	515	520
Croon	1	520	525
Green	2	525	530
	3	530	535
	А	455	460
Blue	1	460	465
	2	465	470
	3	470	475

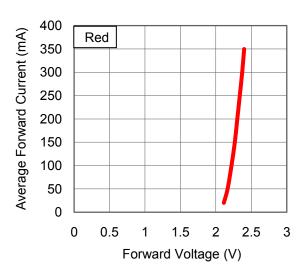
[•] ProLight maintains a tolerance of ± 1nm for dominant wavelength measurements.

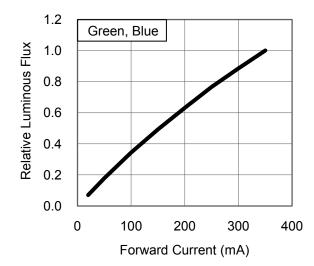
Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

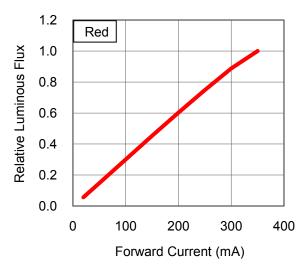

Color Spectrum, T_J = 25°C

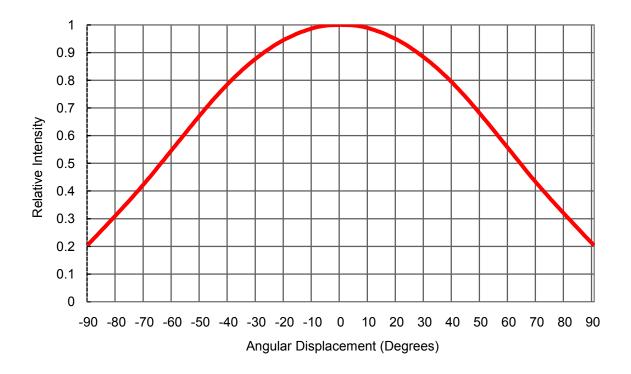
1. Blue · Green · Red


Light Output Characteristics


Relative Light Output vs. Junction Temperature at 350mA


Forward Current Characteristics, T_J = 25°C


1. Forward Voltage vs. Forward Current


2. Forward Current vs. Normalized Relative Luminous Flux

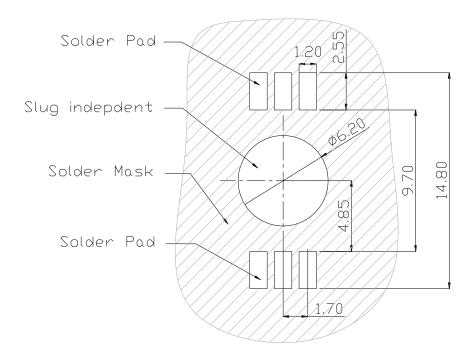
Typical Representative Spatial Radiation Pattern

Lambertian Radiation Pattern

Qualification Reliability Testing

Stress Test	Stress Conditions	Stress Duration	Failure Criteria	
Room Temperature	25°C, I _F = max DC (Note 1)	1000 hours	Note 2	
Operating Life (RTOL)	25 G, IF - Max DG (Note 1)	1000 110015	Note 2	
Wet High Temperature	85°C/60%RH, I _F = max DC (Note 1)	1000 hours	Note 2	
Operating Life (WHTOL)	00 0/00/01(11, 1F - 111ax DO (Note 1)	1000 110019		
Wet High Temperature	85°C/85%RH, non-operating	1000 hours	Note 2	
Storage Life (WHTSL)	05 C/05/MKH, Hon-operating	1000 110019		
High Temperature	110°C, non-operating	1000 hours	Note 2	
Storage Life (HTSL)	110 O, Horr-operating	1000 110013	NOIG Z	
Low Temperature	-40°C, non-operating	1000 hours	Note 2	
Storage Life (LTSL)	-40 G, non-operating	1000 110019		
Non-operating	-40°C to 120°C, 30 min. dwell,	200 cycles	Note 2	
Temperature Cycle (TMCL)	<5 min. transfer	200 Cycles	Note 2	
Non-operating	-40°C to 120°C, 20 min. dwell,	200 cycles	Note 2	
Thermal Shock (TMSK)	<20 sec. transfer	200 cycles	Note 2	
Mechanical Shock	1500 G, 0.5 msec. pulse,		Note 3	
Wedianical Shock	5 shocks each 6 axis		Note 5	
Natural Drop	On concrete from 1.2 m, 3X		Note 3	
Natural Brop	On concrete from 1.2 m, 5X		Note 5	
Variable Vibration	10-2000-10 Hz, log or linear sweep rate,		Note 3	
Frequency	20 G about 1 min., 1.5 mm, 3X/axis		14010 0	
Solderability	Steam age for 16 hrs., then solder dip		Solder coverage	
Golderability	at 260°C for 5 sec.		on lead	

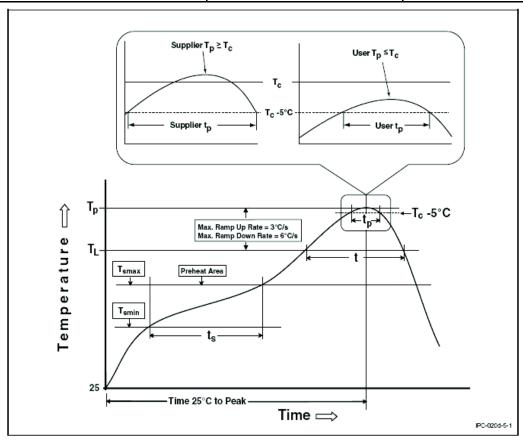
Notes:


- 1. Depending on the maximum derating curve.
- 2. Criteria for judging failure

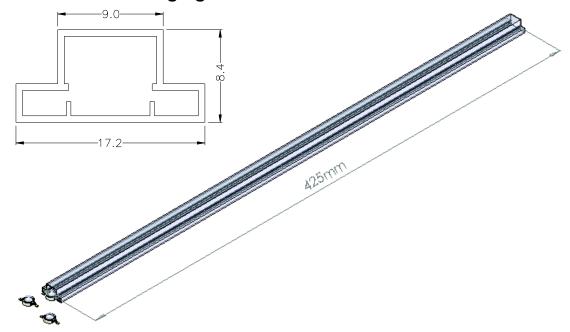
Item	Test Condition	Criteria for Judgement	
пеш	rest Condition	Min.	Max.
Forward Voltage (V _F)	I _F = max DC		Initial Level x 1.1
Luminous Flux or Radiometric Power (Φ_V)	I _F = max DC	Initial Level x 0.7	
Reverse Current (I _R)	V _R = 5V		50 μA

^{*} The test is performed after the LED is cooled down to the room temperature.

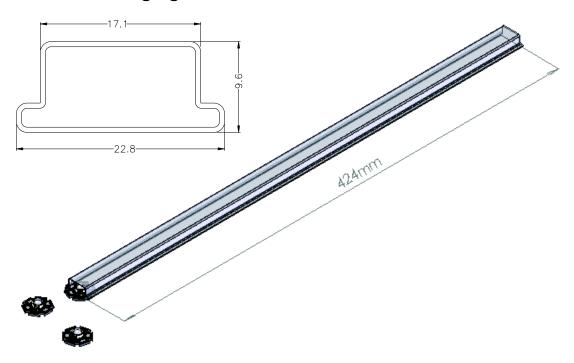
3. A failure is an LED that is open or shorted.


Recommended Solder Pad Design

- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad.


Reflow Soldering Condition

Profile Feature	Sn-Pb Eutectic Assembly	Low-Temp. & Pb-Free Assembly (58Bi-42Sn Eutectic Alloy)	
Preheat & Soak			
Temperature min (T _{smin})	100 °C	90 °C	
Temperature max (T _{smax})	150 °C	120 °C	
Time (T_{smin} to T_{smax})	60-120 seconds	60-120 seconds	
Average Ramp-Up Rate (T _{smax} to T _P)	3 °C / second max.	2 °C / second max.	
Liquidous temperature (T _L)	183°C	138°C	
Time at liquidous (t _L)	60-150 seconds	20-50 seconds	
Peak package body temperature (T _P)	235°C	185°C	
Time (t _P) within 5°C of the specified	20 accords	20 seconds	
classification temperature (T _C)	20 seconds		
Average ramp-down rate (T _P to T _{smax})	6 °C/second max.	3 °C/second max.	
Time 25°C to Peak Temperature	6 minutes max.	4 minutes max.	



- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than two times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Tube Packaging

Star Tube Packaging

Notes:

- 1. Emitter 50 pieces per tube and Star 20 pieces per tube.
- 2. Drawing not to scale.
- 3. All dimensions are in millimeters.
- 4. All dimendions without tolerances are for reference only.

^{**}Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH.

Precaution for Use

- Storage
 - Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH. It is also recommended to return the LEDs to the MBB and to reseal the MBB.
- The slug is is not electrically neutral. Therefore, we recommend to isolate the heat sink.
- The LEDs are sensitive to electrostatic discharge. Appropriate ESD protection measures
 must be taken when working with the LEDs. Non-compliance with ESD protection measures
 may lead to damage or destruction of the LEDs.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets.